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The problem of the concentration of elastic stresses in an unbounded elastic medium containing a semi-infinite cylindrical crack 
is solved using the method of discontinuous solutions. The method enables the problem to be reduced to a one-dimensional 
integrodifferential equation in the unknown jump in displacements in Laplace transform space. The solution of the equation 
obtained is based on the combined use of orthogonal functions and time sampling of the equation, which leads to an infinite 
system of linear algebraic equations. As a result, a wave field disturbed by a crack is constructed, and a formula is obtained for 
calculating the stress intensity factor. The wave field is analysed numerically, and a graph of the stress intensity factor as a function 
of time is plotted. 0 2001 Elsevier Science Ltd. All rights reserved. 

The range of application of the spectral relationship obtained earlier [l] for Chebyshev-Laguerre 
polynomials to non-stationary problems of fracture mechanics is widening. An example of the use of 
this relationship to construct an accurate solution for one such problem has been given, and the 
effectiveness of using it to construct an approximate asymptotic solution for more complex problems 
of fracture mechanics has been painted out [l]. However, the method proposed in [l] is only suitable 
for those fracture mechanics problems in which the solving integrodifferential equation, written in 
Laplace transforms, contains a prescribed right-hand part that can be expanded in inverse powers of 
the Laplace transformation parameter. However, in many problems, the latter does not occur. A problem 
of this type is the determination of the stress intensity factor at the edge of a semi-infinite crack in an 
unbounded elastic medium loaded at the origin of coordinates with a shock centre of rotation. 

The solution of this problem required considerable modification of the method used in [l], which is 
set out below. A different method was proposed for solving non-stationary problems of mechanics in 
[2, 31. Using a method [4] proposed for the related static problem, it would be possible to obtain, for 
Laplace transforms of the functions sought, an accurate solution in the form of quadratures containing 
infinite derivatives. However, the numerical realization of such a solution, even at this stage, is far from 
a simple problem; it becomes even more complicated if an attempt is made to change from the Laplace 
transform to the originals. 

1. FORMULATION OF THE PROBLEM AND ITS REDUCTION TO A 
ONE-DIMENSIONAL INTEGRODIFFERENTIAL EQUATION 

An unbounded elastic medium (0 c r < 00, --7[: c cp< n, --03 c z c -) with shear modulus G and Poisson’s 
ratio p, containing a semi-infinite crack, the surface of which is described by the relations 

r=R, --~c(pcx, aczcw (1.1) 

is subject to the shock action of a centre of rotation at the origin of coordinates with a moment 
M(t) = W-!(t), h w ere H(t) is the Heaviside unit function. The sides of the crack r = R - 0 and 
r = R + 0 are considered to be stress-free 

r,(R+O,z,r)~~~(R+O,z,t)=0 

It is required to determine the stress state and wave fields under zero initial conditions. 

(1.2) 
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The displacement u&, z, t) = U(T, z, t) satisfies the equation [5] 

a2u I au a2u 1 a2u ~+_~~~+~__~, G 

at- r ar r2 az2 c2 at2 
c2 =- 

P 

and the stress r,,,, = r,,, is expressed by the formula 

T,(r,z,t)=G[u’(r,z,t)-r-‘u(r,z,t)l 

(l-3) 

(1.4) 

Here and below, a prime denotes a derivative with respect to the variable r. 
The displacement and stress fields are written in the form 

u=uO+u’, rq =z;+T:, (1.5) 

where U’ and z” are the displacements and stresses caused by the centre of rotation when there is no 
crack in the elastic medium, and U’ and r1 are the required disturbed displacement and stress fields 
caused by the presence of the crack (1.1). Taking (1.5) into account, we will write the condition at the 
crack (1.2) in the form 

r;(RTO,z,t) = -+R,z,t) (1.6) 

The disturbed field U* is constructed in the form of the discontinuous solution of Eq. (1.3) for defect 
(1.1) [6]. To construct it, integral Laplace and Fourier transformations are used successively in accordance 
with the classical scheme 

uk(r,z) = 7 e-“u’(r,z,t)dt, uLx(r) = 7 eikuk(r,z)dz 
0 -m 

and then an integral Hankel transformation with respect to r 

~4:~ = 7 rJ, (ar)uLn( r)dr 
0 

in accordance with the generalized scheme [6]. 
After inverting the Hankel and Fourier transformations, the Laplace transform of the required 

discontinuous solution is obtained in the form 

ub<r,z) = 7 (uz(R,c)) 7 e-‘a’L-S’G,,(r,R)dML;- 
0 -00 

-j ($,(R,c)) j e-i)‘(z-c) &Gpk(r, R)didc 
(I -on 

where 

(1.7) 

(1.8) 

G,,(r,R)= 
I, (rdv)K, (Rdw), r c R 

I, (Rdw)K, (q/w). r > R 

The jump in the derivative of the required function in (1.7) can be eliminated by using (1.4) and (1.6). 
As a result we will have 

(uz(R.~)) = (#W) (1.9) 
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The use of this equality enables us not only to eliminate the jump in the derivative of the required 
function but also to confine ourselves to satisfying condition (1.6) on only one of the sides of the crack, 
for example with R - 0. As a result, we arrive at the integrodifferential equation 

Here 

(1.10) 

(1.11) 

T.“pcp = Mz 
(r2 + z*p 

lJ; = 
Mz (&-&c - 3) 

2(r2 + z2 )% 
exp(-pc(&GF - R)) 

P(P - PI )(P - P2 1 

wherep, = (\ 3/2)(i - I 3)c,p2 = -( \ 3/2)(i + i 3)~. E x ressions for $+, and u:) were obtained earlier [7]. p 

2. A METHOD OF SOLVING 
THE INTEGRODIFFERENTIAL EQUATION 

We introduce the variables 

z=a+xR, c=a+qR 

into (1.10). 
The irregular part of the kernel is separated out as follows. The range of integration is divided into 

two sections: (0, -) = (0, A) + (A, -), w h ere A is a fairly large positive number, and in the second 
section, instead of the derivative of cylindrical functions, the principal term of their asymptotic 
representation for large values of the argument is selected. The subsequent use of formula 7.12(27) 
from [4] of the integral representation of the MacDonald function K&X) enables the required 
representation to be obtained. 

Q,(x - rl) = K&Rx - ?I))+ K,,(K(x - rl)) 

where the regular part of the nucleus has the form 

(2.1) 

R,(R(x - tl)) = 

= a 12(JhZ+p2)K2(&-&- , ’ dh Ijkz + p2 1 
Then, Eq. (1.10) takes the form 

7 X,(a+qR)(K,,(pR(x-q))+R,(R(x-q)))dq= -rL(R.a+xR) 
0 

Temporarily assuming the parameterp to be positive, we make the replacement 

pxR=t,, pRq=o 

(2.2) 

(2.3) 

(2.4) 

in (2.3). 
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As a result, we arrive at the equation 

= -r;(R,u+b-‘) (2.5) 

In order to apply to Eq. (2.5) the convolution theorem for an integral Laplace transformation, the 
function 

@(o,r)= K’(pXp(a+o$)) (2.6) 

is introduced, where L-’ is the operator of the inverse Laplace transformation. Then 

L-‘~PX,~o+op-‘~K,QS-~~l=~~6~t~~o~~S-~~ 

and, after applying the convolution theorem, we have 

L-‘[pX,(a+ap-‘)R,QS-ol,p-‘,l= 

(2.7) 

= L-‘[p*X,(a+op-‘)R&-o[)p-‘)p-‘I= 

’ a@(o,r) = I 
0 

y Z(lS - 01. I - Wr 

where 

aw, T) -= L-‘[p*X,(a+op-‘)] 
ar 

(2.8) 

(2.9) 

In the second relation of (2.9), the convolution theorem is again used taking into account the fact 
that the originals are found by means of formulae 5.8(2), 5.1(5) and 5.3(35) from [9]: 

L-‘(cos@~~ - afp- )p-’ ) = t=r(2J~[J;) 

L-‘( I,(J~)K,( Jxz+p')) = 

= L-' '~*K,Q JK&osx)cos2x 
( 

dx = 
0 I 

ICI2 

= d .&-A[ &J”“‘d” cos2x~=Q&O 
1 

Pinally, instead of the second relation of (2.9), we have 

(2.10) 
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Then, in (2.Q integration by parts is carried out, after which, using relations (2.7) and (2.8), 
Eq. (2.5) in the space of originals can be written in the form 

An approximate solution of integrodifferential equation (2.11) is constructed by combining the method 
of orthogonal polynomials [6] and time sampling. The latter means that the time interval [0, T], in which 
the stress state of the elastic medium is investigated, is divided into intervals [zk, rk+t] with a step 
h = TIN; z, = kTIN (k = 1, 2, . . . , N), while the integral with respect to the variable z is replaced by 
Simpson’s quadrature formula 

(2.12) 

where @k(o) = @(a, rk), and Ak are the coefficients of Simpson’s quadrature formula. 
To construct the approximate solution of system of equations (2.12), the method of orthogonal 

polynomials can be used. Here it is necessary to employ the eigenvalue relation [l] 

os&.sw, n=0,1,2 ,... 

where L?(z) are Chebyshev-Laguerre polynomials. According to the procedure of this method, the 
solution of system of equations (2.12) is constructed in the form 

an (6) = 5 &?-%F (209;“’ (2.13) 
I=0 

after which system (2.12) is reduced to a series (n = 1, 2, . . . , N) of infinite systems of linear algebraic 
equations 

where 

Y,#“)- ;A, 5 @~)B~,,,,=~(“), 1=0,1,2 ,...; n=1,2 ,..., N 
&=I m=O 

(2.14) 

#“) = -7 .&-%~(2~)~;&)d~ 

Thus, to determine @p we obtain the system 

y,#” - 2 cP”‘B m m, =F;‘, 1=0,1,2 ,... 
m=O 

(2.15) 

Using the values of @y’ found from system (2.19, the subsequent values @y’, @y’, . . . are determined 
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from the recurrence relation 

y&j’ - 2 @z’B,, = F,(j) _ ‘i A, f Cp;‘B,, f=O,l,2 ,...; j=2,3 ,..., N 
m=O k=l m=O 

Thus, for the specific value @y’ = a,(1 = 0, 1, . . .) we obtain an infinite system of linear algebraic 
equations of the form (2.15). To prove the convergence of each such system and the ability to use the 
reduction method, it is necessary to prove the convergence of the series 

For the proof, formula 1.14.3(S) from [lo] will be necessary: 

We introduce the notation 

Integrating by parts in this relationship we obtain 

(2.16) 

We will prove the convergence of the series Q,. Taking formula (2.16) into account, we have 

f,” = -!$ f’(&C ~e+$, (c)e = -thF, 

Then Parseval’s equality for the series will have the form 

(N%)-’ = 7 &e-XIF’(x)12dx 
0 

The integral on the right-hand side exists and is finite by virtue of formulae (l.ll), which defines the function F(X). 
This means that the series on the left-hand side also converges. 

To prove the convergence of the series Q,, we represent it in the form of two series 

where 

(relation (2.16) was taken into account). Then, Parseval’s equality will have the form 

/!(5+/)]-’ 
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Using the Cauchy inequality, we obtain the limit 

Thus, the series Qy converges. To prove the convergence of the series Qt. we use the fact that, according to formula 
(2.16), dj, = dj_l,,/(Uj), and we assume that j = k + 1 in the expression for series Q]. 

3. THE CRACK-DISTURBED WAVE FIELD 

The Laplace transform of the displacement, according to (1.7) and (1.8) and notation (l.ll), has the 
form 

uf(r,r)=T X,(a+rlR)j cosh(z-rl) 0 0 [ 
G&R)--&G&R) dhdrl 1 (3-l) 

Izl c m, OSr<m 

Before transferring to the original, (2.4) is substituted into relation (3.1), and then (in order to obtain 
function (2.6) before using the convolution theorem), the integrand is multiplied and divided byp. As 
a result, the required wave field takes the form 

u’(r,z,t) = rj @(o,r)f.-’ cosh(z -of’R)p-* Gpl(r.R)- (3.2) 
00 

To calculate the originals in (3.2), tabulated values 5.8(8) from [3] are used: 

f?(cos h(z - ap-‘)p-2) = cos ( $)(X&r’&ber,(&&)+ 3.z - 

+sin AZ-$ (~~)-‘~ber,(~J;)rX,(z,h.f) 
( 1 

(3.3) 

L-‘(G,#-, R)) = 

=T ul,(aR)I,(ar)2x(~~)-XJ;JX(~~~)dar X2(r,R,h,t) 
0 

Taking into account that JI,~(x) = (Y(rx))‘h sin x, and using the integral representation for the Bessel 
functions ([8], formula 7.14.2(61)) 

2rrJ, (crR)J, (ar) = - 
7 eie r - Re-le 

J,(ao)& o= J r2 + R2 -2rRcosO 
-lt r - Re” 

we obtain 

Here, we have used the value of the tabulated integral ([8], formula 2.12.23(8)). 
Finally, a formula is obtained for carrying out calculations 

u’(r.z,f)=lj ~(o,r)[M(r.R,z.h,r-r)-~~(r,R,z,~,r-~)]~~ 
00 

M(r,R.z.Lr)=~ X,(z.)i,r-r)*X2(r,R,h,r)dz 
0 
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The time-dependence of the displacements at fixed points for different distances a from the centre 
of rotation to the plane passing through the edge of the crack was calculated. 

For example, for a = R, the results obtained are shown in Figs 1-3, which illustrate the nature of the 
change with time of the displacements when there is a crack (the continuous curves) or when there is 
no crack (the dashed lines) in the medium. Graphs of the displacement of the point with the coordinate 
z = R/2 (Fig. l), z = R (Fig. 2) and .z = 3R/2 (Fig. 3) as a function of time t are shown. The left-hand 
parts of the figures (a) correspond to points at which I = 0, and the right-hand parts (b) to points at 
which r = 2R. It can be seen that, for points no further than the edge of the crack from the centre of 
rotation, the first peak of the displacement is observed at the same time, irrespective of whether a crack 
is present or not, but when there is a crack, the maximum values of the displacements are reached later. 
The coincidence of the values of the displacements at a certain initial instant of time (irrespective of 
whether a crack is present or not) is due to the influence of the crack still not being felt because of the 
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fact that the disturbances have not yet reached it. The subsequent appearance of peaks in the values 
of the displacements in Figs 1 and 2 is due to the fact that the crack begins partially to screen the 
disturbances created by the centre of rotation. This may explain why, when the point of observation is 
located further away than the edge of the crack (Fig. 3) the peak in the values of the displacements 
when a crack is present occurs earlier than when there is no crack. 

For these points, graphs of the change in the stresses as a function of time were also plotted, the structure 
of which is similar, and are therefore not given here. To investigate the dependence of the wave fields on 
the distance of the centre of rotation to the edge of the crack, similar graphs were plotted for a = 2R. 
Since the above properties of the wave field were retained here (only the peaks in the values of the 
displacements are observed later in time and their values are lower), these graphs again are not given here. 

4. DERIVATION OF A FORMULA FOR THE STRESS INTENSITY FACTOR 

In the accepted notation of fracture mechanics, we have a formula for the stress intensity factor (SIF) 
which, in Laplace transforms, can be written as follows: 

Taking into account the substitution z = a + XR and substitution (2.4), this formula becomes 

K,q, =JT;;;i;r,(R.a+Sp-‘)w (4.1) 

By inverting (4.1), we obtain an expression for the SIF which, taking into account the time sampling 
above, we will write in the form 

where 

c Aky @k(o)$-dvtj -r,)dO+T$,(Q, j = 1.2.... N 
0 

We will calculate the limit in (4.2). The last two terms in (4.3) will make no contribution to the SIF 
by virtue of formulae (1.11) and (2.11). In the first term in (4.3) series (2.13) is substituted under the 
integral sign. We obtain 

x L~(~cJ)@~‘KO((~ - Ol)dO(r, - ‘j )’ 

It was shown in [l] that 

(4.4) 
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Fig. 4 

Finally, after substituting this result in (4.4), we obtain 

K, I I O,, I= 

The coefficients @’ are determined from system (2.14). 
Figure 4 shows graphs of the time-dependence of the SIF for different values of a/R. 
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